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Objective

Currently no software simulations are available from industry or
academia which can allow an accurate computation of the radar signature
from full scale non-metallic vehicles primarily because existing
formulations have excessive memory and computational demands in
addition to being unsuitable for modern machine architectures. Such
software are required for test and evaluation purposes of future aircraft
systems/platforms, target simulation platforms, on-board communication
systems and for radar signature evaluation..

Traditional methodologies for radar signature or performance
analysis of on-board communication systems have not shown any promise
in simulating large scale composite vehicles. Furthermore, approximate
simulation techniques are of no utility in modeling complex, composite
structures. The intent of this research is thus aimed at developing new
methodologies which will allow accurate and efficient simulations of full
scale vehicles. We propose to accomplish this with the development of
algorithms which have very low memory requirements and make use of
recent advances in high performance and parallel computmg The
particular technique to be employed is a hybrid version of the finite
element method which has been successfully implemented and tested at the
University of Michigan for two-dimensional applications. Also, some three
dimensional results relating to specific scattering and antenna
configurations have verified our expectations of the method's potential.
The basis of this approach is to reformulate an open-boundary problem
into a closed-boundary one using a mesh termination method which brings
the outer boundary very close to the body. Segmentation and connectivity
schemes can then be employed to subdivide the system/volume into smaller
(of any number) sections which can be independently treated by separate
single or parallel processors. Except for the small Toeplitz connectivity
matrices, all others are sparse and banded, making their solution
convenient, and since there is no need for concurrent storage of any of
these submatrices, there is no limitation on the size of the computational
domain, a problem which has become the bottleneck in computational
electromagnetics. It is thus our claim that this solution approach, coupled
with the advantages of the finite element method, will make a dramatic
impact in the field of numerical electromagnetics, and promises to provide
the necessary future tools for numerous applications including target
simulation, radar signature analysis and imaging, antenna modeling and
VLSI circuit simulations.



Progress

As stated above, the main goal of this project is to develop methodologies
for scattering by airborne composite vehicles. Although our primary focus
continues to be the development of a general purpose code for analyzing
the entire structure as a single unit, a number of other tasks are also
pursued in parallel with this effort. These tasks, are important in testing
the overall approach and in developing suitable models for materials
coatings, junctions and, more generally, in assessing the effectiveness of the
various parts comprising the final code.

Below we briefly discuss our progress on the five different tasks which
were pursued during this period. Our progress on each of these tasks is
described in the detailed reports (listed at the end of this report) and the
memoranda included with this document. The first task described below is,
of course, the core of this project and deals with the development of the
overall code. Undoubtedly, it is the outcome of the research which was
funded by NASA-Ames and the Navy over the past three years.

Task: Three-dimensional hybrid finite element formulation for
scattering

During this year we developed the first finite element code for scattering
by structures of arbitrary shape and composition. The code employs a new
absorbing boundary condition which allows termination of the finite

element mesh only 0.3A from the outer surface of the target. This leads to
a remarkable reduction of the mesh size and is a unique feature of the code.
Other unique features of this code include capabilities to model resistive
sheets, impedance sheets and anisotropic materials. This last capability is
the latest feature of the code and is still under development.

The code has been extensively validated for a number of composite
geometries and some examples are given in Figures 1 and 2. The
validation of the code is still in progress for anisotropic and larger non-
metallic geometries and cavities.

The developed finite element code is based on a Galerkin's formulation and
employs edge-based tetrahedral elements for discretizing the dielectric
sections and the region between the target and the outer mesh termination
boundary (ATB). This boundary is placed in conformity with the target's
outer surface thus resulting in additional reduction of the unknown count.



The resulting system is symmetric and is solved via an iterative biconjugate
gradient algorithm. It is particularly important to note that only the non-
zero elements of the sparse matrix system. In this manner, the achieved
storage requirement is 30N. The edge based elements lead to matrices
which have greater bandwidths but are sparser and the employed storage
scheme takes advantage of this sparsity. In contrast to the node-based
elements which have been traditionally used in aerodynamics, the edge-
based elements are better suited for electromagnetic computations. These
Witney form-1 elements maintain tangential field continuity and avoid
specification of the field at metallic corners. This is crucial because certain
field components become undefined at metallic corners.

Over the last few months we have concentrated on the parallelization of the
developed finite element code FEMATS. More specifically, the code was
ported on our recently acquired Kendall Square multiprocessor facility
equipped with 32 processors. At the moment, we have achieved a 23-fold
speed-up demonstrating that the code is fully parallelizable using syntactic
means. In the future, we shall couple syntactic parallelization with other
means of parallelization based on the physical characteristics of the
problem and associated formulation. '

In addition to the aforementioned unique analytical features of the code, we
have also concentrated on user-oriented interface features. Specifically, the
code is currently interfaced with the commercial mesh generation package
IDEAS marketed by SDRC. This package has graphical interface for
building and meshing geometries of arbitrary shape with look-up tables for
material specifications. The Universal geometry file generated by IDEAS
is read by a preprocessor which recasts the geometry data in a form
suitable for the solver. Various postprocessors can be interfaced with the
solver for displaying the near-zone fields and far-zone patterns in color
coded form for diagnostic purposes. Postprocessors included in the IDEAS
package, apE or grafic have been used for data display. To demonstrate
this capability a 2-minute video animation was generated displaying the
near and far zone fields of an aircraft wing as a function of incidence
angle. This video was distributed to NASA-Ames and Pacific Missile Test
Center technical monitors of this project.

Task: Hybrid finite element method for a body of revolution
The body of revolution code was completed this year with the delivery of a

detailed technical report 025921-31-T describing the formulation and
results based on the developed code. Several scattering patterns for coated



and uncoated bodies of revolutions are included in this report which
validate the code and demonstrate its capabilities. A unique feature of this
code is the combined finite element and boundary integral formulations
employed in the implementation. The finite element formulations permit
modeling of inhomogeneous materials, whereas the boundary integral acts
as an exact mesh termination scheme. The mesh can therefore be
terminated very close to the target thus minimizing the unknown count.
The drawback of the boundary integral scheme is that it leads to a full
submatrix which must be handled carefully for memory reductions. As
done in our previous implementations of the finite element method, the
boundary integral is cast in convolutional form and this leads to an O(n)
memory demand of the overall FE-BI system. Much effort was devoted to
the careful computation and implementation of the boundary elements and
details pertaining to this are described in the aforementioned report. More
recently we concentrated on the application of the code to scattering by
coated BOR structures and some examples are shown in figures 3 and 4. In
particular, figure 3 displays the effectiveness of a recently developed
scheme for suppressing the exterior/interior resonances associated with any
solution employing a closed boundary integral formulation. Figure 4
displays the scattering pattern by a coated cone frustrum. As seen the
results of our FE-BI code are in good agreement with the moment method.
A particular characteristic and advantage of the FE-BI method is its
capability to easily treat surface details and inhomogeneous materials.

Task: New impedance wedge diffraction coefficients

Sometime ago we reported in the University of Michigan report 025921-4-
T a new approximate impedance wedge diffraction coefficient for
characterizing the diffraction by an impedance wedge. We resorted to an
approximate coefficient only because the impedance wedge is not amenable
to an exact solution when excited by a wave incident in a plane other than
that normal to the wedge. This diffraction coefficient was later
implemented and successfully tested in a traditional PTD code under a
contract supported by the U.S. Army (see University of Michigan report
028371-1-F).

After several applications, the aforementioned diffraction coefficient was
found to be at times inaccurate for computing the cross polarization fields.
To remedy this deficiency, we examined the possibility of a more rigorous
development for the proposed diffraction coefficients. From the start, this
effort proved challenging but we have now arrived at a procedure which
has yielded a more accurate diffraction coefficient. The new diffraction



coefficient is composed of three different ones, each valid at certain
regions of interest as illustrated in figure 5. The validity regime of each of
these is based on the specific approximations made in the derivation process
and details pertaining to this as given in the technical report 025921-30-T.
A chapter is also included in this report providing an extensive validation
of the diffraction coefficients for different wedge angles and face
impedances. These comparisons clearly show the derived diffraction
tensors are very accurate. Examples of the comparisons are shown in
figures 6 and 7. On these figures, the new solution is termed as “Ist Order
Approx. GTD”. The indicated differences observed in the shown
comparisons are attributed to multiple interactions, and do not therefore
burden the developed diffraction coefficients. It is worth pointing out that
the derived diffraction coefficients reduce to the known tensors for the
wedges having included angles of 0 and 180 degrees.

Task: New finite element formulations for electromagnetic
modeling

In our last semi-annual report we reported of a finite element formulation
using new solution-aware expansion functions. At that time, we had
completed a two-dimensional implementation of this formulation. The
three-dimensional implementation is now nearly complete and we shall
intially consider its application to inlet and guided structures. For inlets
having canonical cross-sections, the finite element method will be
implemented with the guided modes serving as the basis functions in
constructing the sparse system of equations. This should allow the
simulation of long inlets since fine meshing will only be required at the
inlet mouth, the engine face and at irregular bends of the inlet geometry
not conforming to some canonical shape. This implementation will serve as
a demonstration of the method's capability to model large inlet structures.
The next step will be the implementation of the method to inlet structures
whose shape may be considered as a perturbation of some canonical
geometry. In the case of inlets having arbitrary cross section we will
consider an implementation based on a combined finite element-high
frequency implementation. That is, the fields in the guided region of the
inlet structure will be formulated using a ray representation, whereas the
regions near the inlet lip and the engine face will be, as before, fine meshed
in the usual manner.



Task: New integral equations for scattering by coated
structures

Thin material coatings are nowadays routinely used in the construction of
all airborne vehicles. Nevertheless, their electromagnetic characterization
in the context of integral equations still relies on the use of the simple but
less accurate impedance boundary conditions. On the other hand, although
finite element formulations can readily deal with the presence of material
coatings, their implementation is inefficient when the coating becomes thin.
This is because very small elements must be used in the vicinity of the thin
coating.

To avoid the inaccuracy of the impedance boundary condition and the
inefficiency of the finite element method for modeling thin coatings, a new
integral equation was derived and discretized for implementation. The
derivation of the new integral equation is described in the University of
Michigan technical report 025921-25-T entitled “Alternative field
representations and integral equations for modeling inhomogeneous
dielectrics”. In comparison with traditional integral equations which
require as many as eight unknowns in their discretization, the new integral
equations requires only three unknowns per cell without any compromise
in accuracy. The approximate integral equation based on the impedance
boundary condition requires four unknowns per cell. In addition the new
integral equation is also associated with a lower kernel singularity which
greatly facilitates its discretization. A code based on this formulation has
been written and validated. A short report pertaining to the formulation
and results obtained from this code are described in the included
memorandum.
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The mesh of the sphere-capped cone frustrum
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Storage requirement vs surface area
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Discretization of the new integral equation
for modelling inhomogeneous dielectrics

Sunil S.Bindiganavale and John L.Volakis

Radiation Laboratory
Department of Electrical Engineering
and Computer Science
The University of Michigan
Ann Arbor, Michigan 48109-2122.

September 5,1992

Abstract

A new integral equation for scattering by an inhomogeneous di-
electric is discretized using rectangular brick elements. Edge-based
linear shape functions are used for the expansion of the field inside
the dielectric and the modified Galerkin’s technique is employed for
testing the integral equation. Results demonstrating the validity of
the integral equation are presented.

1 Introduction
The modeling of inhomogeneous dielectrics by an integral equation approach

is traditionally accomplished by the introduction of equivalent volume electric
and magnetic currents as shown in figure (1).
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Figure 1: Traditional Dielectric/Ferrite body formulation

For a dielectric with non-trivial permittivity and permeability this type
of modeling implies six scalar unknowns at each volume location. As a re-
sult, the implementation of the resulting integral equation is computation-
ally intensive and has excessive storage requirements. Recently [1] it was
demonstrated that any inhomogeneous dielectric material, regardless of its
permittivity and permeability profile can be modelled by a single electric
or magnetic current density. Alternatively, either the electric or magnetic
fields within the dielectric can be used as the unknown quantities. However,
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since this reduced-unknown integral equation involves the derivatives of the
unknown quantities, a higher basis function is required for discretizing the
resulting integral equation. Hence the use of linear shape functions.

2 Discretization

2.1 The Integral equation

The volume electric-field integral equation to be discretized is of the form :
] o ! T Br — 1 ’ ’
E(r) = E(r)- /// [VGo(r,r) x 1] {——v x E(r')
Vi Hr
+V' x [(e, — I)E(r')]} dv’ (1)

where I = £3 + 4 + 22, Go(r, 1) is the free-space Green’s function, E* is the
incident field and V; is the dielectric volume.
From the properties of an identity dyad, equation (1) becomes

B = B+ [, Vouler) x {0 B

fir
4V x (6 — 1 )E(r’)]} dv’ (2)

Assuming the material parameters are constant in each unit cell of discretiza-
tion and the domain of integration is limited to one such cell (say cell ‘q’)
then equation (2) is :

: 1

Ei(r) = E(r) + {er,,, _ ;—} / / [ VGolr,v) x [V < EG@) &' (3)
4 q

where p,, and ¢,, are the relative permeability and permittivity within the

qth cell and V, is the volume of the qth cell.

From elementary calculus,

1

VGo(r,r') = — (jko -

) Go(r,r') R (4)
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Hence equation (3) becomes:

Ei(r) = E(r)— {e,q _ ulq}///‘ (jko + %) Go(r, ')

R x [V' x E(r")] dv’ (5)

2.2 Basis functions

The dielectric layer is assumed to be thin (t < A). It is discretized by
use of rectangular brick elements whose height is equal to the thickness of
the dielectric. For the expansion of the field inside the dielectric we use
edge-based expansion functions borrowed from the finite element domain [2].
Edge-based expansion functions avoid explicit specification of the fields at
the corners and edges. The geometry of the brick element with a local co-
ordinate system is shown in figure (2). The electric field can be expanded

2
[
8
L/
4
6
5@ ¥
b
2
1 > x
[Ved
I A

a

Figure 2: The rectangular brick element
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Expanding equation (5) in terms of one such vector expansion function :

E(r) = W;i(r)—{erq—;q} Il (ot ) Goteor)

Rx [V x Wi(')] dv’ (7)
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2.3 Testing procedure

Galerkin’s procedure involves choosing the weighting (testing) functions to
be the same as basis functions in the inner product of the method-of-moments
solution as follows :

(w,g):///vw-gdvszjvpf-gdv (8)

where w and f are the weighting and basis functions respectively, and this
integration is over the whole volume of the dielectric. Since the basis func-
tions are subdomain basis functions, the integration limits of equation (8)
actually can be reduced to V,,, the volume of the cell p where the weighting
function w is defined. Forming the above scalar product on equation (7):

JIf, W) B [/// (r')dv] 6(p—q)—{e,q—ﬂqu}
JIf, W) /// (%0+ %) Golr. )

Rx |V x Wir')] dv’ dv (9)

where §(p—q) indicates a contribution within the self-cell alone. Equation (9)
gives rise to a system of equations which can be written as:

{Zmn}{‘ﬁn} = {Vm}

where typical elements are given by :

%44 /// W2 (r) - E(r) dv

77 = U/ m( (l‘)dv} (P—q)—{frq—uqu}
I, we ///v (1404 5) Gote)

Rx [V x Wi(r')| dv' (10)
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For self-cells the kernel of the integrand in equation (3) has a 77 singularity
which needs to be carefully evaluated. For self-cells we re-write the corre-
sponding impedance matrix element from equation (3) as :

zy, = [ Jf, W) Wi(r’)dv] 6(p—q)+ { - #1}
///Vq( Vix Welr // WP, (r) x VGo(r,r')dvdv’ (11)

The symmetric property of the free-space Green’s function gives

VGo(I', r’) = —V’Go(l‘, r') (12)

Using equation (12) and interchanging the order of integration in equa-
tion (11) :

= [/// WoL(r )dv] 5(p—q)+{erq—u1rq}
///Vq "X Wi(r) /// P (r) = W2, (r')] x VGo(r,r') dv dv/
_{fq_uqu}
/// V’an )){ )xV'/// Gorr)dv}dv (13)

An analytical expression for the integration of the free-space Green’s function
over an equivalent spherical volume is derived based on [3]. This is of the
form :

1 : in(k )
///v Go(r,r)dv = k_'zq—o{e-ﬂ‘oso (S—IH(T:S—CQ — S cos(koso)) + sin(kgsg)e 7"
P Q-

1 ) : | )
( +]n) — sm(kosc,)e"k"so (— + ]Sg) (14)
ko kO

where 7 is the radius of a sphere equal in volume to the rectangular brick
and so is the distance between the center of the sphere and the source point,
r'. The name modified Galerkin’s method (MGM) comes from the fact that
the testing cells are spheres while the source cells continue to be the original
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rectangular bricks. Note that the MGM is not equivalent to using spherical
cells because we continue to use rectangular bricks as the domain for the
source integration. I

Also,
, , , _ J [koso cos(koso) — sin(koso)]
v /./ Vp Golr, ) dv = { k3 s2eikon
77 [koso cos(koso) — sin(koso)]
+ kZs2eikon
So

where (2., y., z) are the co-ordinates of the center of the sphere. Note that as
so — 0 all the terms in equations (14) and (15) converge to a finite quantity.

2.4 Excitation

In all the above cases, the excitation is a plane wave given by

a

E'(r) = [(&-6) i + (& §) §1] e (16)

where & = 0% cos & + qg" sin a is the polarization vector given by
k' = —ko (sin 0 cos ¢'% + sin 6" sin ¢'gj + cos 0’32) (17)
and 6 and g£i are the usual unit vectors in the spherical system and are

associated with the angles ' and ¢'.

2.5 Scattering parameters

The scattered field can be obtained from equation (2) and (4) as

Ee(r) = // [ VG, r')x{ET—u—:—l—V'xE(r')-{—V'x[(fr - I)E(r’)]}dv’ (18)

Making the far field approximation for the magnitude R = r and the phase

!

~r—r-r,

ik —ikogr N
Es(r) — L Z {frq —

drr T

} / / /V : T [7 x V' x E(r)] dv'  (19)
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Then the RCS is given by :

s 2
o = lim 4nr? {E(r)l2 (20)
e |E(r)]

3 Results and Validation

The implementation of the presented numerical solution is lengthy as is usu-
ally the case with most three-dimensional numerical solutions. The validation
of the code was done with data obtained from codes used to generate the re-
sults in [4]. Figure (3) displays the backscatter patterns for a 0.2) long, 0.2A
wide and 0.025X thick dielectric plate. Figures (4) and (5) display backscatter
patterns for 0.1 long, 0.1\ wide and 0.025X thick and 0.2A long, 0.2X wide
and 0.025) thick dielectric/magnetic plates respectively. Figure (6) shows
bistatic scattering patterns for a 0.2X long, 0.2A wide and 0.025) thick PEC
block simulated by a lossy dielectric.

4 Conclusion

In this work we discretized and implemented a new, reduced unknown inte-
gral equation for scattering by a dielectric layer. Results demonstrating the
validity of the integral equation were presented. The impedance matrix gen-
erated was found to be asymmetric since the testing procedure destroys the
reciprocity of the integral equation. Hence iterative schemes like the CGFFT
for rectangular plates could not be employed; thereby limiting the size of the
structures investigated. Modified forms of this integral equation which result
in symmetric impedance matrices are being investigated.
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Figure 3: Backscatter RCS for 1=0.2X, w=0.2X and t=0.025) dielectric plate
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